
Master Degree Program in Computer Science and Networking 

High Performance Computing 

2nd appello - February 13, 2013 

The answers can be written in English or in Italian. Please, present the work in a legible and readable form. 
All the answers must be properly and clearly explained.  

 

Question 1 

A stream parallel computation  has the following characteristics: 

1. input stream element = (opcode, x), output stream element = (y), where x and y are of integer type, 

and opcode = 0, 1, 2, 3 identifies one of four distinct operations to be applied to x; 

2.  is implemented by a functional partitioning scheme with 4 workers W0, W1, W2, W3, each one 

specialized for a distinct operation identified by opcode. The four operations are equi-probable; 

3. processing elements have a scalar pipelined CPU, with clock cycle , time slot equal to , parallel 

Execution Unit with 4-stage pipelined integer functional units, 32K on-demand primary data cache, 

on-chip secondary cache; 

4. let u = 

; 

5. the interarrival time of  is equal to u; 

6. Tsetup = u/10, Ttransm = u/100, zero-copy communication and communication processors; 

7. worker Wi, for i = 0, 1, 2, has its own integer internal state Si, and is defined as follows: 

 input a :   output b = Fi (a, Si); Si = Gi (a, Si); 

8. the mean processing times of F0, G0, F1, G1, F2, G2 are respectively equal to: u, u, 4u, 8u, u, 2u; 

9. worker W3 encapsulates an integer array C[M], with M = 10
3
, and is defined as follows: 

 input a :   output b = number of elements of C which are integer multiples of a. 

For the evaluation of W3 processing time, assume that the event “an element of C is an integer 

multiple of a” has negligible probability. 

a) Evaluate the service time and the relative efficiency of  and of each module belonging to  

implementation. 

b) Transform possible bottlenecks in order to improve the service time of . 

 

Question 2 

a) Explain the following sentence: “In the performance evaluation of a parallel program on a shared 

memory architecture, the values of interprocess communication parameters Tsetup and Ttransm depend, in 

general, also on the parallel program itself (structure and implementation)”. 

b) Explain under which conditions we can assume that, with acceptable approximation, Tsetup and Ttransm are 

independent of the parallel program. 

 

Question 3 

With reference to a pipelined scalar CPU, explain in quantitative terms what is the impact of the Execution 

Unit parallelization on performance. 

  



2 
 

Solution 

to be integrated with proper explanations 

Question 1 

a) The functional partitioning implementation of  consists of a distributor module IN, the four workers, and 

a collector module OUT. 

The ideal service times of IN and OUT are respectively equal to Tsend(2) and Tsend(1), in practice both are 

equal to Tsetup = u/10 << TA, thus they are not bottlenecks. 

According to the multiple server theorem, the interarrival time to any worker is equal to 4u. 

The ideal service times of the first three workers are: 

                    

                     

                    

All the communications are fully overlapped to computation. 

W0 and W2 are not bottlenecks, while W1 is a bottleneck. 

Let us evaluate the ideal service time of W3, without considering the communication primitives (see above), 

under the assumptions about the CPU architecture. The pseudo-code is: 

int C[M]; int a, b; int s = 0; 

for (i = 0; i < M, i++)  

if ( C[i] % a ) = 0  

s++; 

which is compiled and optimized as follows: 

 

LOAD   Rvtg, 0, Ra 

LOAD   RC, Ri, Rc, don’t_deallocate 

1. LOOP: MOD   Rc, Ra, Rmod 

2.  INCR   Ri 

3.  IF  0   Rmod, CONT 

4.  INCR   Rc 

5. CONT: IF <   Ri, RM, LOOP, delayed_branch 

6.  LOAD   RC, Ri, Rc, don’t_deallocate 

 

(Delayed branch could be applied to IF  0 using INCR Ri, but consequently the distance of the logical 

dependency induced by instruction 1 becomes 1). 

We have to pay the effect of a branch (instruction 3), with probability  = 1/6, and of a logical dependency 

induced by instruction 1 on 3, of distance k = 2, probability dk = 1/6, NQ = 2, Lpipe-k = 4 and no long-latency 

instruction in the critical sequence (2 = 0). The dependency of 2 on 5 has no effect. Thus, the service time 

per instruction, without cache faults, is given by: 

T = (1 + )t + 1 = (1 + )t + t dk (NQ + Lpipe-k + 1 – k) = 2t 

The completion time without cache faults is: 

Tc0 = 6 M T = 12 M t = 24 M  



3 
 

Array C has the property of reuse: after the first stream element application, C is permanently maintained in 

cache. Thus, the cache fault penalty is negligible, and the ideal service time of W3 is : 

                     

W3 is not a bottleneck. 

In conclusion, only W1 is a bottleneck, and its steady-state interarrival time becomes 12u. The steady-state 

interarrival time of W0, W2, W3 must be re-evaluated. The interdeparture time from IN becomes: 

 

 
          

Thus, the steady-state interarrival time to W0, W2, W3 are: 

  

 
 

     

According to the multiple clients theorem, the interarrival time to OUT, equal to the effective service time of 

 is given by: 

 

  
  

 

   
  

 

   
  

 

   
  

 

   
  

 

    
  

 

     
  

 

    
  

 

    
  

 

    
 

Thus, we confirm that the effective service time is equal to the steady-state interarrival time of : 

       

    
     
  

  
  
  

  
 

   
      

For the component modules: 

 

Module   ideal service time  effective service time  efficiency 

IN    Tsetup = 0.1 u   TW = 3 u   IN = 0,033 

OUT    Tsetup = 0.1 u   TW = 3 u   OUT = 0,033 

W0   2 u    12 u    W0 = 0,17 

W1   12 u    12 u     

W2   3 u    12 u    W2 = 0,25 

W3   2.4 u    12 u    W0 = 0,2 

 

b) Only the data-flow paradigm can be applied to parallelize the bottleneck module W1, because it is a 

module with state and operates on elementary types.  

F1 and G1 can be executed in parallel on a, and the new state produced of G1 

is sent to F1 (this communication has negligible effect on the service time).  

Thus, because F1 has to wait for the updated state, the effective service time 

of W1 is reduced to TG1 = 8u, and W1 remains a bottleneck. All the steady-

state interarrival times of workers are now equal to 8u.  

For  we have: 

        

        

 

F1 

G1 

initialized S1 

initialized S1 

AND-logic data-flow graph of W3 



4 
 

Question 2 

a) Parameters Tsetup and Ttransm are proportional to the under-load latency  for memory access. Notably, Tsetup 

 5 and Ttransm   for typical architectural characteristics.  

The under-load latency is a function of the base latency  and of parameters p and Tp (insert their 

definition) which depend on the parallel program structure (uswed parallel paradigms), on parallelism degree 

n, and on program mapping. 

In general, in order to evaluate a parallel program, we need to apply an iterative procedure (determine n for a 

by-experience initial value of Tsetup and Ttransm; then determine , p and Tp, which depend also on n; then 

determine new values of Tsetup and Ttransm; then re-evaluate n, …) until convergence. (Explain clearly the 

relative dependencies among these parameters) 

b) Tsetup and Ttransm are approximately independent of the parallel program if two conditions hold: 

i) the impact of p and Tp on  is limited in such a way that we can assume that ; 

ii) because  is a function of the average distance between nodes, this introduces another element of 

dependency on the parallel program mapping. Thus, the approximation is acceptable if the mapping 

and/or the network is not too sensible to the distance. 

 

Question 3 

The EU parallelization is able to minimize the EU ideal service time (one time slot): this has an obvious 

positive effect on the ideal service time of the architecture and, most important, on the mean waiting time in 

queue, W(), of instructions delivered to the EU server. In fact, the delay  incurred by IU for logical 

dependency is proportional to the EU response time: 

RQ = W() + Ls 

On the other hand, the EU functional units are parallelized according to the pipeline paradigm, which has a 

negative effect on EU latency Ls compared to an ideal realization with latency equal to the service time 

(explain why, in practice, the pipeline paradigm is the only parallelization forms for streams of arithmetic 

operations). This is the reason for which the goal of the logical dependency optimizations is to mask the 

effects of the EU latency. 


