

High Performance Computing

Part 2

Errata-Corrigie**Page 9**

Figure:

Page 32

Last but one paragraph: eliminate parentheses.

Page 70

3rd paragraph – The new version is:

In a SMP architecture, in which statistically the memory accesses are uniformly distributed over the m_M macro-modules, p can be estimated as

$$p = \frac{N}{B_M (m_M, N)}$$

where N is the number of PEs, and B_M is the interleaved memory bandwidth evaluated in Section 2.4.2.

For example, for $N = 64$, for $m_M = 8$ we have $p \sim 8$, while for $m_M = 64$ p reduces to about 1.6.

Page 76

Add the following paragraph:

In SMP architectures, since

$$p = \frac{N}{B_M (m_M, N)}$$

(see Section 4.3), *low-p* mappings are mainly achieved with a large number of interleaved macro-modules.

Page 113

Replace formula

$$L_{sync} = 4 R_Q$$

with

$$L_{sync} = 4 \Omega$$

Page 38

2nd paragraph:

However, more sophisticated design styles can be conceived, making exploitation of reuse possible in the non automatic approach too.

Page 65

In principle, ~~no~~ there is no reason for synchronous writing, because possible “delayed”

Page 96

1st paragraph:

(READ_REQ, WRITE_REQ, WT_REQ, WB_REQ) and through the most significant bits.