
An algorithm for Performance Analysis of

Single-Source Acyclic graphs

Gabriele Mencagli

September 26, 2011

In this document we face with the problem of exploiting the performance
analysis of acyclic graphs of cooperating computation modules. In particular
we need an algorithm designed for solving the following problem:

Problem 0.1 (Steady-state analysis of acyclic computation graphs). Given an
acyclic computation graph G = (V,E), in which nodes represent computation
modules and edges are data streams, we need a procedure that determines the
inter-departure times, that is the effective performance behavior at steady-state,
of each node in the graph.

S1

S3

S4

S5

S2

S7

S6
0.630t

40t

25t 200t

27t

0.4

0.5

0.5

0.3

0.7

150t

25t

0.2

0.8

Figure 1: An acyclic computation graph labeled with the ideal service times of each
node and the routing probabilities.

In Figure 1 is depicted an example of an acyclic computation graph of seven
modules working asynchronously and cooperating by exchanging messages. In
the graph each node is labeled with its ideal service time and, when a node has
multiple out-going edges, they are labeled with the corresponding probability
of transmission. We need an algorithm that has the following features:

� it needs to perform an ordered graph traversal: to correctly establish for
each node its inter-arrival time and thus its utilization factor, each node
should be visited only when all its in-coming neighbors have been visited
and their inter-departure times correctly determined;

1

� for each node of the graph it is necessary to calculate its inter-arrival
time and its utilization factor in order to discover if it is a bottleneck
or not. We have two possible situations: (1) the currently visited node
is not a bottleneck, i.e. its ideal service time is equal or less than its
inter-arrival time and consequently the node influences neither the inter-
departure times of the already visited nodes nor of the nodes that are
still to be explored; (2) the current node is a bottleneck and it influences
the inter-departure times of the previously explored nodes that will be
properly incremented.

The first requirement implies that the nodes of the graph should be visited
according to a specific ordering. As it is known from basic notions in Graph
Theory, every directed acyclic graph has at least one topological ordering, i.e. an
ordering of its nodes such that the starting vertex of every edge occurs earlier in
the ordering than the ending vertex. It can also be shown that an acyclic graph
can have multiple admissible topological orderings. Therefore let us suppose
to have one of these topological orderings as input of the algorithm. We can
observe that if the algorithm visits the nodes following this ordering, the first
requirement will be achieved: each node will be visited iff all its in-coming
neighbors have already been explored. An example of a topological ordering of
the graph in Figure 1 is depicted in Figure 2.

S1 S2 S3 S5 S6 S7S4

Figure 2: A topological ordering of the graph depicted in Figure 1.

We need a data-structure that represents a general node of the graph. Each
node n has four numerical attributes that describe: (1) its inter-arrival time;
(2) its ideal service time; (3) its inter-departure time; (4) its utilization factor.
Moreover the node maintains a list OUT of references to out-going neighbors
and a list IN of pairs (n

′
, p), where n

′
is a reference to one of its in-coming

neighbors which transmits to n with probability p.

Function of the node data-structure

Class Node {1

double TA;2

double TS ;3

double Tp;4

double ρ;5

ListNode OUT ;6

ListPair IN ;7

}8

These data-structures are properly initialized at the beginning of the algo-
rithm execution. For each node the service time variable and the IN and OUT
lists are properly initialized according to the structure of the input graph. The

2

inter-arrival, the inter-departure times and the utilization factors will be calcu-
lated by the algorithm. For each sink node we assume the presence of a fictitious
out-going edge such that the inter-departure time can always be defined. For
each source node (although in-coming edges do not exist), the inter-arrival time
is kept to be equal to the inter-departure time from that node (and furthermore
at the beginning of the execution it coincides with the ideal service time of the
node too). The algorithm evolves as follows:

1. The inputs are a directed graph G = (V,E) and one of its topological
ordering S (represented as an array of |V | nodes);

2. The algorithm performs the graph traversal by visiting each node following
the ordering S. For each explored node its inter-arrival time and its actual
utilization factor are determined. Therefore we are able to identify if the
node is a bottleneck or not;

3. If the currently explored node is not a bottleneck (ρ ≤ 1), its inter-
departure time equals its inter-arrival time and the graph traversal con-
tinues with the next node in the topological ordering S;

4. If the explored node is a bottleneck (ρ > 1), its inter-departure time
coincides with its ideal service time. At this point the algorithm needs to
update the inter-departure times of the nodes already visited in the graph
ordering;

5. The algorithm ends when all the nodes have been explored and no bot-
tleneck has been discovered (i.e. nodes have an utilization factor less or
equal to 1).

The fourth point is the most critical one. In this section we introduce a formal
algorithm for acyclic graphs in which there is exactly one source node . In
this case we are able to define an efficient algorithm whose correctness can be
proved by introducing the following invariant property:

Invariant 0.2. When the i-th node in the input topological ordering S is visited,
all the previously explored nodes (i.e. from the first one to the (i− 1)-th of the
ordering) have an utilization factor less or at most equal to 1.

The invariant is satisfied at the beginning of the execution. Every topological
ordering of a single source graph starts with the source node. As stated before,
for this node its inter-arrival time is initialized to the ideal service time, thus
its utilization factor is initially equal to 1. If, during the graph traversal, no
bottleneck node is discovered, the algorithm will end when the last node is
visited. In this case for each node its inter-departure time equals its inter-arrival
time and the graph analysis can trivially be completed.

On the other hand let us suppose that when the i-th node of ordering is
visited, its utilization factor is greater than 1. This situation is depicted in
Figure 3. We denote the currently discovered bottleneck the node Sb at position
i of the topological ordering. Its ideal service time Tb is greater than its actual
calculated inter-arrival time TA (i.e. ρb > 1). Since, by the invariant, every
previous node in the ordering has already been visited and its utilization factor
is less (or equal) to 1, the inter-arrival time to Sb can be expressed in function of
the actual inter-departure time TpS from the unique source node of the graph.

3

S

B
Tp
S Tb

TA

π

π

'

Figure 3: Bottleneck discovery.

To this end we take the set P(Sb) of all the paths in the graph starting from
the source node and ending to the current bottleneck node Sb. A path π is an
ordered sequence of edges such that the origin of each is equal to the destination
of its predecessor edge. E.g:

π =
〈

(N1, p1, N2), (N2, p2, N3), . . . , (Nk−1, pk−1, Nk)
〉

Where a directed edge is represented as a triple e = (N, p,N
′
) where the first

and the third element are the two end-point vertices of the edge and the second
element is the probability that the first node transmits to the second one. For
brevity we indicate with e.p the probability corresponding to the edge e. By
invariant all the nodes preceding Sb in the ordering have ρ ≤ 1, thus we can
determine the inter-arrival time to Sb by taking all the paths starting from the
source node and ending to Sb, and iteratively applying the Server Partitioning
theorem to calculate the inter-arrival time to the bottleneck:

TA =

 ∑
∀π∈P(Sb)


∏
∀e∈π

e.p

TpS

−1 (1)

As we have seen the presence of the new discovered bottleneck node Sb
influences the inter-departure times of all the previously explored nodes: i.e.
they must be properly corrected. After this correction, the new inter-arrival
time T

′

A to Sb must be equal to its ideal service time Tb. Thus, similarly to the
previous case, we can express the new inter-arrival time to Sb in function of the
corrected inter-departure time from the source node T

′

ps :

T
′

A =

 ∑
∀π∈P(Sb)


∏
∀e∈π

e.p

T ′
pS

−1 = Tb (2)

In order to understand how we can correct the inter-departure time from the
source, we can express the following relation: T

′

ps = Tps · α where α is a multi-

4

plicative factor. At this point we need to find an α such that: ∑
∀π∈P(Sb)


∏
∀e∈π

e.p

α TpS

−1 = Tb

From which we obtain the right expression for the coefficient α: ∑
∀π∈P(Sb)


∏
∀e∈π

e.p

α TpS

−1 =
TpS∑

∀π∈P(Sb)

(∏
∀e∈π

e.p

) =
Tb
α

We can observe that the first element of the equation is the original inter-arrival
time TA, thus we can write:

TA =
Tb
α

=⇒ α =
Tb
TA

= ρb

Therefore, when a new bottleneck node is discovered, we can correct the inter-
departure time from the source node by multiplying the old inter-departure time
by the utilization factor of the bottleneck node that has been discovered.

Proposition 0.3 (Invariant preservation). During the algorithm execution, if
the i-th node of the topological ordering is a bottleneck (ρi > 1), we need to
correct the inter-departure time from the source by multiplying this value by the
utilization factor ρi. Then the algorithm is re-started from the beginning and,
this time, when the i-th node is reached its utilization factor will be equal to 1
and all the previous nodes will continue to have an utilization factor less than
1.

Proof. This proposition proves the correctness of the algorithm. Multiplying
the inter-departure time of the source by the utilization factor of the discovered
bottleneck is the only way to achieve a new corrected inter-arrival time T

′

A to
Sb equals its service time Tb. Since ρb > 1 this means that the corrected inter-
departure time T

′

ps is greater than the original one Tps , and thus the nodes
preceding Sb in the ordering will continue to have an utilization factor less than
1.

1 Algorithm description

Algorithm 2 presents an automatic procedure for single source acyclic graph
analysis. The algorithm proceeds in the following fashion. All the nodes are
visited according to an input topological ordering. For each node is calculated
its inter-arrival time by accessing its IN neighbor list (row 4). After that the
utilization factor of the node is determined (row 5) and the bottleneck and non-
bottleneck cases are examined. The most simply situation is when no bottleneck
is discovered: in this case (from row 9 to 11) the inter-departure time of the
current node is equal to the calculated inter-arrival time. Otherwise, if a bot-
tleneck is discovered (from row 6 to 8), the inter-departure time of the source
(first node in the ordering) is corrected as we have said and the visit re-starts
from the beginning.

5

Algorithm 2: Steady-state Analysis(G, S)

Data: a single-source acyclic graph G = (V,E) and one of its topological
ordering S.

Result: at the end of the execution the attribute Tp of each node
corresponds to its inter-departure time at steady-state.

begin1

i ← 1;2

while i ≤ |V | do3

S[i].TA =

(∑
(u,p)∈S[i].IN

p

u.Tp

)−1
;

4

S[i].ρ =
S[i].TS
S[i].TA

;
5

if S[i].ρ > 1 then bottleneck case6

S[1].Tp = S[1].Tp × S[i].ρ;7

i ← 1;8

else not bottleneck case9

S[i].Tp = S[i].TA;10

i ← i+ 1;11

12

end13

Proposition 1.1 (Time complexity of steady-state analysis). At the worst case
the time complexity of steady-state analysis is O(|V |2) for sparse graphs and
O(|V |3) for dense graphs.

Proof. The cost in terms of time complexity of a graph traversal (without any
restart) is O(|V | + |E|), since for each node its list IN is visited once (see
row 4). The traversal of the graph needs to be re-started whenever a bottleneck
node is discovered. Let us consider B the number of bottleneck nodes that are
discovered during the algorithm execution, where 0 ≤ B ≤ |V |. The complexity
of steady-state analysis is O (B · (|V |+ |E|)) where at the worst case B = |V |
(i.e. whenever a node is explored for the first time it results a bottleneck).
Therefore for sparse graphs (where |E| = O(|V |)) the time complexity is O(|V |2)
whereas for dense graphs (where |E| = O(|V |2)) is O(|V |3). We can also notice
that if no bottleneck node is discovered (i.e. B = 0), the time complexity of the
algorithm is the same of a simple graph traversal.

For completeness we can observe that the algorithm needs as inputs a topo-
logical ordering S. As it is well-known the time complexity for finding a topo-
logical ordering is the same of a DFS (depth-first search) traversal of the graph,
i.e. O(|V | + |E|). Thus the cost of Algorithm 2 dominates the overall time
complexity for the steady-state analysis.

Example. In Figure 4 is provided an example of steady-state analysis of an
acyclic graph. Let us consider the input graph depicted in Figure 1 labeled
with the ideal service times of each node and the routing probabilities. Figure 4
depicts the different phases of the algorithm execution following the topological
ordering shown in Figure 2. Gray nodes represent explored vertices, white nodes

6

S1

S3

S4

S2

S7

S6
30t

40t

25t 200t

27t

150t

25t

50t

75t
75t

~166t

~54t

S5

(a) The graph traversal starts from the node S1. It is the unique source so its inter-arrival time is initially equal to
its service time. Next, node S2 is explored: the node is not a bottleneck since its inter-arrival time (50t) is greater
than its service time. The same thing happens for nodes S3 (with inter-arrival time 75t) and for S4 with inter-arrival
time 166t. When S5 is discovered, its is a bottleneck: its inter-arrival time 54t is less than its service time 150t
and its utilization factor is ρ5 = 2.79. Therefore we update the inter-departure time of the source node that passes
from 30t to 30t · ρ5 = 84t.

S1

S3

S4

S2

S7

S6

40t

25t 200t

27t

150t

25t

~465t

~150t

S5

~84t

~140t

~209t
~209t

~266t
~266t

~123t

(b) At this point the graph traversal re-starts from node 1. When S5 is reached, it is not a bottleneck anymore (i.e.
ρ5 = 1). Now the node S6 is explored and it is not a bottleneck (its inter-arrival time is 266t). Then the last node
S7 is visited and its inter-arrival time 123t is less than its service time 200t. So this node is a bottleneck and its
utilization factor is ρ7 = 1.62. Hence we update the inter-departure time of the source node that passes from 84t to
84t · ρ7 = 136t.

S1

S3

S4

S2

S7

S6

40t

25t 200t

27t

241t

25t

~755t

~943t

S5

~136t

~226t

~340t
~340t

~427t
~427t

~200t ~200t

(c) The graph traversal re-starts from node 1. At this point no bottleneck node is identified: i.e. for every node
in the graph its utilization factor is now lower or equal to 1. The algorithm terminates correctly providing the
steady-state behavior of the acyclic graph.

Figure 4: An example of steady-state analysis of an acyclic graph.

7

Node Service time Inter-departure time Utilization factor

S1 30t 136t .2205
S2 40t 226t .1770
S3 25t 340t .0736
S4 25t 755t .0326
S5 150t 241t .6224
S6 27t 427t .0633
S7 200t 200t 1

Table 1: Results of steady-state analysis.

correspond to vertices that are still to be explored whereas a point-based black
node is the currently discovered bottleneck. The final results are shown in
Table 1.

2 Impact of randomness on Single-Source graphs
Analysis

We conclude the analysis of acyclic computation graphs by providing a brief
discussion about the impact of the randomness on the accuracy of the results
achieved with the algorithm. In the previous sections we have assumed deter-
ministic service times for each node of the graph: i.e. for each node its ideal
service time is a fixed constant value. In this case the accuracy of the algorithm
has been evaluated on several example graphs through a Queueing Network sim-
ulator (Java Modelling Tool). The simulation results demonstrate an absolute
precision of the algorithm which is able to quantify the steady-state behavior of
each node.

Things can become different if we introduce randomness, i.e. if we suppose
stochastic random variables that model the service time of each node. Here, the
service time assumes stochastic values following a probability density function
with a known average value. A valuable modeling consists in assuming that
the service processes of each node follow an exponential distribution. With this
assumption each node in the network is modeled as a M/M/1 queue (instead
of D/D/1 queues as in the previous discussion). The main property of this
distribution is the memoryless: if we assume that each service request (task)
is independent from the others, the service time for completing a task does
not depend on the service times spent for the previous tasks calculated by the
node. For stream-based parallel computations the exponential approximation
is usually an acceptable modeling approach.

All the basic results for graph analysis, i.e. the inter-departure, server par-
titioning and multiple clients theorems are still valid if we assume exponential
random variables modeling the ideal service times of each node in the graph.
On the other hand, compared to the deterministic case, in the exponential case
the size of each queue plays an important role for attenuating the randomness
impact. In fact we expect that the results of the steady-state analysis approxi-
mates well the behavior of a M/M/1 network if, for each node, the queue size is
large enough (but still bounded). For this reason we have simulated the behav-

8

ior of the network shown in Figure 1, in which ideal service times are assumed
to be the average values of corresponding exponential random variables. The
simulations have been performed by using Java Modelling Tools and by varying
the size of each queue. Tests for 25, 6, 3, 2 and 1 buffer positions are depicted
in Table 2.

Node Er %.(25) Er %.(6) Er %.(3) Er %.(2) Er %.(1)

S1 .5014 2.4086 7.1857 10.2389 18.0247
S2 .7897 2.4254 7.1375 10.3436 18.3095
S3 .6359 2.8383 6.9518 10.1564 17.6470
S4 .3411 1.8848 6.8147 9.46308 18.2592
S5 .7325 2.2014 6.6678 9.77189 17.8800
S6 .1996 2.6694 6.8376 9.64912 17.3708
S7 .0820 .9448 6.4509 9.43553 17.6844

Table 2: Accuracy of steady-state analysis in function of the queue size of each node.

In the table are reported for each queue node the percentage errors between
the simulation results and the inter-departure times obtained by the algorithm
execution. As we can expect if we decrease the size of each queue the errors
increase. For this example we can observe that for large enough queue size (up
to 12 buffer positions), the errors are less than 1% for each node. For very
limited queue size (i.e. 3, 2 and 1 positions), the errors are less than 8, 11 and
19% for each node.

9

