Appendice A

Formulario

Fattore di selettività di una condizione

Condizione (ψ)	Fattore di selettività
$A_i = c$	$f_s(\psi) = \begin{cases} 1/N_{key}(A_i) & \text{se esiste un indice su } A_i \\ 1/10 & \text{altrimenti} \end{cases}$
$A_i = A_j$	$f_s(\psi) = \begin{cases} \frac{1}{\max\{N_{key}(A_i), N_{key}(A_j)\}} & \text{se esistono indici su } A_i, A_j \text{ e} \\ & adom(A_i) \subseteq adom(A_j) \text{ o} \\ & adom(A_j) \subseteq adom(A_i) \\ 0 & \text{se } adom(A_i) \text{ e} adom(A_j) \text{ sono disgiunti} \\ 1/N_{key}(A_i) & \text{se esiste un indice solo su } A_i \\ 1/10 & \text{altrimenti} \end{cases}$
$A_i > c$	$f_s(\psi) = \begin{cases} \frac{\max(A_i) - c}{\max(A_i) - \min(A_i)} & \text{se } A_i \text{ di tipo numerico e con indice} \\ 1/3 & \text{altrimenti} \end{cases}$
$A_i < c$	$f_s(\psi) = \begin{cases} \frac{c - min(A_i)}{max(A_i) - min(A_i)} & \text{se } A_i \text{ di tipo numerico e con indice} \\ 1/3 & \text{altrimenti} \end{cases}$
$A_i < A_j$	$f_s(\psi) = 1/3$
A_i BETWEEN c_1 AND c_2	$f_s(\psi) = \begin{cases} \frac{c_2 - c_1}{\max(A_i) - \min(A_i)} & \text{se } A_i \text{ di tipo numerico e con indice} \\ 1/4 & \text{altrimenti} \end{cases}$
$A_i IN (v_1, \ldots, v_n)$	$f_s(\psi) = \left\{ egin{array}{ll} n imes f_s(A_i = v) & \text{se minore di 1/2} \\ 1/2 & \text{altrimenti} \end{array} ight.$
NOT ψ_1	$f_s(\psi) = 1 - f_s(\psi_1)$
ψ_1 AND ψ_2	$f_s(\psi) = f_s(\psi_1) \times f_s(\psi_2)$
ψ_1 OR ψ_2	$f_s(\psi) = f_s(\psi_1) + f_s(\psi_2) - f_s(\psi_1) \times f_s(\psi_2)$

2 Appendice A Formulario

Operatori fisici: descrizione

Operatore logico	Operatore fisico	Descrizione
Tabella	TableScan (R)	Scansione di R.
R	IndexScan (R, Idx)	Scansione ordinata di R sugli attributi dell'indice Idx .
	IndexSequentialScan (R, Idx)	Scansione di R ordinata sulla chiave primaria con l'organizzazione sequenziale con indice.
	SortScan $(R, \{A_i\})$	Scansione di R ordinata sugli $\{A_i\}$.
Proiezione	Project	Proiezione dei record di O
$\pi^b_{\{A_i\}}$	$(O,\{A_i\})$	senza l'eliminazione dei duplicati.
$\pi_{\{A_i\}}$	Distinct (O)	Eliminazione dei duplicati dai record di O ordinati sugli $\{A_i\}$.
Restrizione	Filter (O,ψ)	Restrizione dei record di O .
σ_{ψ}	IndexFilter (R, Idx, ψ)	Restrizione di R con l'indice Idx e accessi a R .
	IndexSequentialFilter (R,Idx,ψ)	Restrizione sulla chiave primaria di ${\cal R}$ memorizzata con l'organizzazione sequenziale con indice.
	IndexOnlyFilter $(R,Idx,\{A_i\},\psi)$	Restrizione di R con l'indice Idx senza accessi a R . L'operatore ritorna i record di R che soddisfano ψ , con attributi gli $\{A_i\}$, un sottoinsieme degli attributi sui quali è definito l'indice.
Giunzione	NestedLoop (O_E,O_I,ψ_J)	Giunzione con l'algoritmo nested loop.
	PageNestedLoop (O_E,O_I,ψ_J)	Giunzione con l'algoritmo page nested loop.
\bigvee_{ψ_J}	IndexNestedLoop (O_E,O_I,ψ_J)	Giunzione con l'algoritmo index nested loop; O_I utilizza un indice definito sugli attributi di giunzione.
	MergeJoin (O_E,O_I,ψ_J)	Giunzione con l'algoritmo merge join. I record degli operandi O_E e O_I sono ordinati sugli attributi di giunzione, chiave in O_E e chiave esterna in O_I
Ordinamento $ au_{\{A_i\}}$	Sort $(O, \{A_i\})$	Ordinamento dei record di O sugli $\{A_i\}$.
	GroupBy $(O, \{A_i\}, \{f_i\})$	Raggruppamento dei record di O ordinati sugli $\{A_i\}$ usando le funzioni di aggregazione in $\{f_i\}$.
Raggruppamento $\{A_i\}^{\gamma}\{f_i\}$	$(O, \{A_i\}, \{f_i\})$	L'operatore ritorna record con attributi gli A_i e le funzioni di aggregazione in $\{f_i\}$, ordinati sugli $\{A_i\}$.
	Union, Except, Intersect (O_E, O_I)	L'operatore ritorna record con attributi gli A_i e

Costo e cardinalità del risultato $(E_{ m rec})$ degli operatori fisici

Operatori fisici per tabelle

Operatore	Costo	Cardinalità del risultato
TableScan(R)	$N_{\sf pag}(R)$	$E_{ m rec} = N_{ m rec}(R)$
IndexScan(R,Idx)		
indice non di ordinamento	$N_{leaf}(Idx) + N_{rec}(R)$	
indice di ordinamento	$N_{leaf}(Idx) + N_{pag}(R)$	
${\bf IndexSequentialScan}(R,Idx)$	$N_{leaf}(Idx)$	
$SortScan(R,\{A_i\})$	$4\times N_{\rm pag}(R)+N_{\rm pag}(R)$	

Per ordinare un insieme di record si suppone di usare un algoritmo che (a) opera sui dati che sono in un file (b) ordina i dati con un solo passo di fusione, con costo $4 \times N_{\mathsf{pag}}(R)$, e (c) lascia i dati ordinati in un file che vanno poi letti con costo $N_{\mathsf{pag}}(R)$.

Operatori fisici per la proiezione

Operatore	Costo	Cardinalità del risultato	
$Project(O, \{A_i\})$	C(O)	$E_{{ m rec}}=E_{{ m rec}}(O)$	
Distinct(O)	C(O)	$E_{\text{rec}} = \begin{cases} N_{\text{key}}(A_i) \\ N_{\text{rec}}(O) \\ min\{E_{\text{rec}}(O), \prod N_{\text{key}}(A_i)\} \\ E_{\text{rec}}(O) \end{cases}$	$\begin{array}{l} \text{se } \{A_i\} = 1 \\ \text{se una chiave di } O \in \{A_i\} \\ \text{se noti gli } N_{\text{key}}(A_i) \\ \text{altrimenti} \end{array}$

Operatori fisici per la restrizione

Operatore	Costo	Cardinalità del risultato
$Filter(O,\psi)$	C(O)	$E_{\text{rec}} = \lceil f_s(\psi) \times E_{\text{rec}}(O) \rceil$
IndexFilter (R, Idx, ψ)	C_A^I	$E_{\mathrm{rec}} = \lceil f_s(\psi) \times N_{\mathrm{rec}}(R) \rceil$
IndexSequentialFilter (R, Idx, ψ)	$\lceil f_s(\psi) \times N_{leaf}(Idx) \rceil$	
IndexOnlyFilter $(R,Idx,\{A_i\},\psi)$	$\lceil f_s(\psi) \times N_{leaf}(Idx) \rceil$	

Se Idx è di ordinamento,

$$\begin{split} C_A^I &= C_I + C_D = \lceil f_s(\psi) \times N_{\mathsf{leaf}}(Idx) \rceil + \lceil f_s(\psi) \times N_{\mathsf{pag}}(R) \rceil \\ &\text{altrimenti,} \\ C_A^I &= \lceil f_s(\psi) \times N_{\mathsf{leaf}}(Idx) \rceil + \lceil f_s(\psi) \times N_{\mathsf{key}}(A_i) \rceil \times \lceil \Phi(N_{\mathsf{rec}}(R)/N_{\mathsf{key}}(A_i), N_{\mathsf{pag}}(R)) \rceil \end{split}$$

4 Appendice A Formulario

Operatori fisici per la giunzione

Operatore	Costo	Cardinalità del risultato
$NestedLoop(O_E,O_I,\psi_J)$	$C(O_E) + E_{rec}(O_E) \times C(O_I)$	$E_{\text{rec}} = \lceil f_s(R.A_i = S.A_j) \times \\ E_{\text{rec}}(O_E) \times E_{\text{rec}}(O_I) \rceil$
PageNestedLoop (O_E,O_I,ψ_J)	$C(O_E) + N_{\sf pag}(O_E) imes C(O_I)$	
IndexNestedLoop (O_E,O_I,ψ_J)	$C(O_E) + E_{rec}(O_E) imes C_A^I(O_I)$	
$MergeJoin(O_E,O_I,\psi_J)$	$C(O_E) + C(O_I)$	

Operatore fisico per l'ordinamento

Operatore	Costo	Cardinalità del risultato
$\mathbf{Sort}(O,\{A_i\})$	$C(O) + 6 \times N_{pag}(O)$	$E_{{\rm rec}}=E_{{\rm rec}}(O)$

Per ordinare il risultato di O, si suppone di memorizzarlo in un file, con costo $N_{\mathsf{pag}}(O)$, di usare un algoritmo che (a) opera sui dati che sono in un file (b) ordina i dati con un solo passo di fusione, con costo $4 \times N_{\mathsf{pag}}(O)$, e (c) lascia i dati ordinati in un file che vanno poi letti con costo $N_{\mathsf{pag}}(O)$.

Operatore fisico per il raggruppamento

Operatore	Costo	Cardinalità del risultato
$\mathbf{GroupBy}(O,\{A_i\},\{f_i\})$	C(O)	$E_{\rm rec}=<\!\!{ m come}$ Distinct $>$

Operatori fisici per le operazioni insiemistiche

Operatore	Costo	Cardinalità del risultato
$Union(O_E,O_I)$	$C(O_E) + C(O_I)$	$E_{\text{rec}} = E_{\text{rec}}(O_E) + E_{\text{rec}}(O_I)$
$Except(O_E, O_I)$	$C(O_E) + C(O_I)$	$E_{{\sf rec}} = E_{{\sf rec}}(O_E)$
$Intersect(O_E, O_I)$	$C(O_E) + C(O_I)$	$E_{\text{rec}} = < \text{come} \bowtie \text{con attributi di}$
		giunzione tutti gli attributi>
$UnionAll(O_E,O_I)$	$C(O_E) + C(O_I)$	$E_{\rm rec} = E_{\rm rec}(O_E) + E_{\rm rec}(O_I)$